1.4 FORMA POLAR Y EXPONENCIAL DE UN NUMERO COMPLEJO
NÚMEROS COMPLEJOS EN FORMA POLAR
Se puede representar un número complejo cualquiera z = a +bi en forma polar, dando su módulo y su argumento. Esta forma tambien se llama forma trigonométrica.
MÓDULO de un número complejo z es la longitud del vector que lo representa.
|z| = r
ARGUMENTO de un complejo es el ángulo que forma el vector con el eje real.
arg(z) = a
Por lo cual z = r (cos ð + isen ð )
Numeros Complejos en Forma Forma Binómica
Forma binómica z = a + bi
Operaciones con Numeros Complejos en Forma Polar
Multiplicación
Se multiplican los módulos
Se suman los argumentos
División
Se dividen los módulos
Se restan los argumentos
Potencia
La potencia es un producto de factores iguales, por tanto la regla es la misma que la de multiplicar.
El módulo se eleva a n
El argumento se multiplica por n
Forma Exponencial o de Euler.
Hay una última forma de expresar un número complejo, es la Forma Exponencial.
Un número complejo en forma polar se expresa como z = r(cosa + i sena). Si sustituimos el contenido del paréntesis por la igualdad de Euler:
eia = cosa + isena
Nos queda
z = r•eia.
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario